全站搜尋 電子雜誌搜尋

AD

ad970250

不錯過知識訊息,立即加入國家地理官方X

Jun. 16 2023

從 J 粒子到宇宙射線:丁肇中的實驗物理之旅

  • 丁肇中院士於 2013 年 5 月講述 AMS 首次研究成果。 圖|NASA

    丁肇中院士於 2013 年 5 月講述 AMS 首次研究成果。 圖|NASA

  • 丁肇中院士 2022 年 12 月在中研院物理所演講,題目為「我所經歷的現代物理和我的體會」。 圖|中研院物理所

    丁肇中院士 2022 年 12 月在中研院物理所演講,題目為「我所經歷的現代物理和我的體會」。 圖|中研院物理所

  • 縱軸是正負電子對產生率的實驗結果和 QED 理論預測的比值,橫軸是到電子中心的距離,代表電子半徑大小。 圖|研之有物(資料來源|丁肇中)

    縱軸是正負電子對產生率的實驗結果和 QED 理論預測的比值,橫軸是到電子中心的距離,代表電子半徑大小。 圖|研之有物(資料來源|丁肇中)

  •  新探測器必須非常精確,還必須在非常強的放射線下遮蔽輻射,避免影響儀器。圖中藍色部分是磁鐵,黃色部分是大型探測器;黑色區塊部分是遮蔽材料,例如鈾、鉛和肥皂,放在水泥周圍遮蔽輻射,位置會依實際需求而變動。此外,圖中 A0、 A、B、C、a、b、S 等黑色線段都是小型探測器。 圖|研之有物(資料來源|丁肇中)

    新探測器必須非常精確,還必須在非常強的放射線下遮蔽輻射,避免影響儀器。圖中藍色部分是磁鐵,黃色部分是大型探測器;黑色區塊部分是遮蔽材料,例如鈾、鉛和肥皂,放在水泥周圍遮蔽輻射,位置會依實際需求而變動。此外,圖中 A0、 A、B、C、a、b、S 等黑色線段都是小型探測器。 圖|研之有物(資料來源|丁肇中)

  • 從原子到夸克的示意圖,膠子是夸克之間的「強作用力」傳遞媒介,用彈簧形狀示意。(為求圖片精簡,仍使用三夸克模型) 圖|研之有物(資料來源|丁肇中)

    從原子到夸克的示意圖,膠子是夸克之間的「強作用力」傳遞媒介,用彈簧形狀示意。(為求圖片精簡,仍使用三夸克模型) 圖|研之有物(資料來源|丁肇中)

  • 國際太空站照片,阿爾法磁譜儀(AMS-02)位於國際太空站一側, 如右側紅圈處。 圖|European Space Agency

    國際太空站照片,阿爾法磁譜儀(AMS-02)位於國際太空站一側, 如右側紅圈處。 圖|European Space Agency

  • 國際太空站照片,阿爾法磁譜儀(AMS-02)正在收集宇宙數據,於 2011 年 5 月 19 日安裝完成。 圖|NASA

    國際太空站照片,阿爾法磁譜儀(AMS-02)正在收集宇宙數據,於 2011 年 5 月 19 日安裝完成。 圖|NASA

  • 目前推測電子和正電子來源有三種可能性:宇宙線(含有質子和氦)與星際物質之間的碰撞、脈衝星產生、再來是暗物質的碰撞。 圖|研之有物(資料來源|丁肇中、Wiki)

    目前推測電子和正電子來源有三種可能性:宇宙線(含有質子和氦)與星際物質之間的碰撞、脈衝星產生、再來是暗物質的碰撞。 圖|研之有物(資料來源|丁肇中、Wiki)

  • 除了探索電子來源之外,AMS 也檢視了正電子的來源。低能量的正電子主要來自宇宙線的碰撞,高能量正電子的分布則大致與暗物質理論相符合,有待更多數據驗證。 圖|研之有物(資料來源|丁肇中)

    除了探索電子來源之外,AMS 也檢視了正電子的來源。低能量的正電子主要來自宇宙線的碰撞,高能量正電子的分布則大致與暗物質理論相符合,有待更多數據驗證。 圖|研之有物(資料來源|丁肇中)

  • 李世昌院士(左)與丁肇中院士(右)對談。 圖|中研院物理所

    李世昌院士(左)與丁肇中院士(右)對談。 圖|中研院物理所

1
 

丁肇中經歷的現代物理與體會

丁肇中是享譽全球的物理學家,他的研究為現代物理學奠定了基礎,也讓他獲得 1976 年的諾貝爾物理獎。丁肇中是中央研究院院士,也是現任麻省理工學院的物理學教授。歷經數十年實驗物理的研究之路,他用一次次的實驗結果打破原本的理論認知,為物理學開創了新的道路。丁肇中如何從 J 粒子的發現,走到最前沿研究宇宙射線,探索宇宙的起源與未知?中研院「研之有物」梳理記錄丁肇中 2022 年在院內物理研究所的演講內容,介紹他在物理學領域的傑出成就以及科學家的體悟。

丁肇中院士 2022 年 12 月在中研院物理所演講,題目為「我所經歷的現代物理和我的體會」。 圖|中研院物理所

丁肇中院士 2022 年 12 月在中研院物理所演講,題目為「我所經歷的現代物理和我的體會」。 圖|中研院物理所

實驗是自然科學的基礎,理論如果沒有實驗的證明,是沒有意義的。當實驗推翻了理論後,才可能創建新的理論;理論是不可能推翻實驗的。過去 400 年來,我們對物質基本結構的了解,大都來自於實驗物理。」中研院物理所於 2022 年 12 月 27 日舉辦了李水清講座,邀請到著名的實驗物理學家丁肇中,他以這段話做為整場講座的開端。

從丁肇中踏上實驗物理之路開始,至今已有 60 多年,這一路走來,丁肇中累積了許多突破性的成果,這些經歷也讓他獲得了豐富的人生體會。在這場講座中,丁肇中以「我所經歷的現代物理和我的體會」為題,一一細數這些成果及體會,在言談中展露出他對物理的熱情、堅持,以及永不磨滅的興趣與好奇心。

專家結論不一定是對的:證明電子沒有體積

1965 年丁肇中前往德國的大型粒子物理學研究機構「德國電子加速器」(DESY)進行第一個實驗工作,目的是證明「電子沒有體積」。為什麼要做這個實驗呢?因為當時科學家對電子有無體積的問題出現了爭議。

根據理查·費曼(Richard Feynman) 、朱利安·施溫格(Julian Schwinger)和朝永振一郎在 1948 年提出的量子電動力學理論(Quantum Electrodynamics,簡稱 QED),電子是沒有體積的,當時所有的實驗都證明了 QED 理論的完備性,他們三人也因此獲得 1965 年的諾貝爾物理獎。

可是在1964年時,哈佛大學和康乃爾大學的科學家和專家耗費多年心思,進行兩個不同的實驗,卻得出與 QED 相反的結論——量子電動力學是錯誤的,電子是有體積的,半徑是 10-13~10-14 公分。這個結論是兩個不同實驗團隊的成果,也因此受到物理界人士的認可和重視。

當時剛獲得博士學位的丁肇中,決定用不同方法來測量電子半徑。丁肇中回憶:「那個時候沒有人相信我能做出這個實驗,更沒有人支援我。」所以在 1965 年,丁肇中決定離開美國,到德國新建的 DESY,利用這個周長 320 公尺的加速器,產生能量 75 億電子伏特的光,打到儀器上,以測量電子的半徑。

在德國八個月後,丁肇中的實驗結果證明量子電動力學是正確的:電子真的沒有體積,它的半徑小於 10-14 公分。我們可以說:在當年實驗可及的範圍內,電子半徑為零(consistent with zero)。這推翻了當初康乃爾大學與哈佛大學備受重視的實驗結果。

"丁肇中:「我的第一個體會就是:做實驗不要盲從專家的結論。」"

縱軸是正負電子對產生率的實驗結果和 QED 理論預測的比值,橫軸是到電子中心的距離,代表電子半徑大小。 圖|研之有物(資料來源|丁肇中)

縱軸是正負電子對產生率的實驗結果和 QED 理論預測的比值,橫軸是到電子中心的距離,代表電子半徑大小。 圖|研之有物(資料來源|丁肇中)

堅持做對的事:解開 J 粒子之謎

1965 到 1970 年間,丁肇中在 DESY 做了他的第二個實驗,這是一系列和光子、重光子相關的實驗。光子的質量為 0,當時已經知道有三種重光子,它們的質量約為 8 億~10 億電子伏特(eV/c2),其他的特徵則與光子一樣。

丁肇中表示,在高能情況下,重光子與光子應該可以互相轉化,只是機率很低。要找到互相轉化的事例,實驗裝置必須能辨識出一億分之一的發生事例,後來他也成功完成了這項困難的實驗。

之後,丁肇中還想解決另一個問題:「為什麼所有的重光子質量都和質子的質量相近,都是 10 億電子伏特左右?」為了尋找更重的重光子,丁肇中決定到美國布魯克黑文國家實驗室(Brookhaven National Laboratory)的質子加速器上,做一個更加精密的探測器。

要找到高質量的重光子,必須每秒鐘輸入一萬億個高能量質子到探測器上,這會徹底破壞探測器,也會對工作人員造成危險。所以,丁肇中發展的新探測器不但必須非常精確,還必須是在非常強的放射線下,能正常工作的儀器。

因此輻射遮蔽相當重要,如下圖。藍色部分是磁鐵,黃色部分是大型探測器,為了保護探測器,在中心放射線周圍包裹了厚厚的水泥,黑色區塊部分是遮蔽材料,例如鈾、鉛和肥皂(含水可吸收中子),放在水泥周圍遮蔽輻射,位置會依實際需求做改動。此外,圖中 A0、 A、B、C、a、b、S 等黑色線段都是小型探測器。

這個實驗的遮蔽材料總共用了 5 噸鈾-238、100 噸的鉛、 5 噸的肥皂,以及 1 萬噸的水泥。整個實驗設施的最外圍,還會堆上大量的水泥塊,保障工作人員安全。

 新探測器必須非常精確,還必須在非常強的放射線下遮蔽輻射,避免影響儀器。圖中藍色部分是磁鐵,黃色部分是大型探測器;黑色區塊部分是遮蔽材料,例如鈾、鉛和肥皂,放在水泥周圍遮蔽輻射,位置會依實際需求而變動。此外,圖中 A0、 A、B、C、a、b、S 等黑色線段都是小型探測器。 圖|研之有物(資料來源|丁肇中)

新探測器必須非常精確,還必須在非常強的放射線下遮蔽輻射,避免影響儀器。圖中藍色部分是磁鐵,黃色部分是大型探測器;黑色區塊部分是遮蔽材料,例如鈾、鉛和肥皂,放在水泥周圍遮蔽輻射,位置會依實際需求而變動。此外,圖中 A0、 A、B、C、a、b、S 等黑色線段都是小型探測器。 圖|研之有物(資料來源|丁肇中)

高質量的質子碰撞,可以增加新粒子產生的機率,但其他無關事例產生的機率也同樣會提高。丁肇中形容,尋找高質量的重光子就像是:

「在臺北下雨的時候,每秒鐘會降下 100 億顆雨滴,其中有一顆的顏色不同,你必須在 100 億顆裡面把它找出來。」

可想而知,物理界都不看好這個實驗,因為理論物理學家認為,現有理論已「足夠」解釋現象,找高質量的重光子物理意義不大;實驗物理學家則認為,沒有人能做出如此困難的實驗。

在排除萬難的堅持之下,1974 年丁肇中就在實驗中發現了新的粒子「J 粒子」,它的壽命比已知的粒子長一萬倍。丁肇中說:「這個發現的重要性,就等同於我們到深山裡發現了一個偏僻的村子,村民不是一百歲,而是一百萬歲,也就是這些人和普通人類是不一樣的。」

換句話說,這證明了宇宙中有新的物質存在,理論必須修正。

當時科學界流行三夸克模型,也就是用三種夸克基本粒子來解釋質子和中子的狀態,而 J 粒子的發現,證實了還有第四種夸克「魅夸克」(Charm quark)的存在。

這段歷程讓丁肇中有了第二個體會:

"「做基礎研究要對自己有信心,做你認為正確的事,因為自然科學的發展基本上是多數服從少數,不要因為大多數人反對而改變你的興趣。」"

意外不意外:發現膠子

1970 年代,丁肇中的第三個實驗,是在德國正負電子對撞機(PETRA)上做的,PETRA 是當時能量最高的正負電子對撞機,可讓 300 億電子伏特的正負電子對撞。丁肇中在實驗過程意外發現膠子的存在。

膠子是人眼不可見的基本粒子,是自然界基本作用力「強作用力」的傳遞媒介(Force carrier)。根據現在的標準模型(Standard Model),我們知道原子核裡面有質子和中子,質子和中子是由數個夸克組成,而膠子可以在夸克之間傳遞強作用力,讓夸克束縛在一起。

從原子到夸克的示意圖,膠子是夸克之間的「強作用力」傳遞媒介,用彈簧形狀示意。(為求圖片精簡,仍使用三夸克模型) 圖|研之有物(資料來源|丁肇中)

從原子到夸克的示意圖,膠子是夸克之間的「強作用力」傳遞媒介,用彈簧形狀示意。(為求圖片精簡,仍使用三夸克模型) 圖|研之有物(資料來源|丁肇中)

那麼,丁肇中是如何發現膠子的呢?

物理中用來描述強作用力的理論是量子色動力學(Quantum Chromodynamics),根據理論預測,一個正電子和負電子碰撞時會產生能量,大部分是轉變成一對夸克和反夸克(兩個噴柱)。偶爾會產生夸克、反夸克和一個膠子(三個噴柱)。

在丁肇中的實驗中,透過大量的測量,發現正負電子對撞後,果真出現了許多三噴柱的事例,這三個噴柱現象的數量與分布和量子色動力學是符合的,這個實驗結果證明了膠子的存在。

「我們最初做實驗的時候,並沒有想到會發現膠子。最初做實驗目的是繼續尋找電子的半徑。」丁肇中說。因此這個實驗帶給丁肇中的第三個體會,就是:

"「對於意外的現象,要有充分的準備。」"

大型國際科學合作:L3 實驗

丁肇中的第四個實驗,是 1982~2003 年在歐洲核子研究中心(CERN)進行的 L3 實驗。他們以周長 27 公里的加速器,將對撞的正負電子能量增加到 1000 億電子伏特,碰撞時的溫度是太陽表面的 4000 億倍,也是宇宙誕生最初的 1000 億分之一秒時的溫度,「我們是在實驗室內製造宇宙剛開始的情況。」丁肇中說。

這個實驗的目的是尋找宇宙中最基本的粒子,解答關於宇宙中各種粒子的問題,包括宇宙中有多少種電子?電子有多大?為什麼找不到電子的體積?電子能不能分成更小的粒子?現在有人說最基本的粒子是夸克,夸克到底有幾種?夸克有多大?能不能分成更小的粒子?

這次的國際合作實驗,有美國、蘇聯 、中國、臺灣、歐洲等 19 個國家,共約 600 名科學家共同參加。實驗的規模很大,每個國家也各司其職。實驗的最外層重達 1 萬公噸的磁鐵,以及探測器中 300 公噸的鈾,都來自蘇聯;用於探測高能粒子和高能射線的鍺酸鉍晶體(簡稱 BGO),原本全世界年產量只有 4 公斤,經由中國上海矽酸鹽研究所研發成功,生產了 12 公噸,用於這項實驗中;臺灣與義大利、瑞士的團隊共同研發矽微條軌跡探測器,測量粒子位置的解析度可達 5 微米,中央大學團隊也參與了數據分析。

L3 的實驗前後進行了 20 年,發表了 300 篇相關論文。丁肇中總結出以下結論:

  1. 宇宙中只有三種不同的電子和六種不同的夸克。
  2. 電子是沒有體積的,它的半徑小於 10 -17 公分。
  3. 夸克也是沒有體積的,它的半徑小於 10 -17 公分。
  4. 所有的實驗結果都和電弱理論符合,電弱理論是描述電磁力和弱作用力的理論。

 

「很不幸的,所有的結果都和電弱理論符合。」丁肇中說:「當一個實驗和理論有衝突的時候,才能學到新的東西,把理論推翻掉。假如實驗結果和理論符合,那麼學到的東西就很少。所以對我來說,L3 並不是成功的實驗。」

這個首次的大型國際合作經驗,也為丁肇中帶來了第四個體會:要領導一個國際合作,要選科學上最重要的題目,引起參加國際科學家的最大興趣。對貢獻大的國家要有優先的認可,使之得到國際上的公認,才能得到參加國政府長期的優先支援。

"「要領導一個國際合作,要選科學上最重要的題目。」"

國際太空站照片,阿爾法磁譜儀(AMS-02)位於國際太空站一側, 如右側紅圈處。 圖|European Space Agency

國際太空站照片,阿爾法磁譜儀(AMS-02)位於國際太空站一側, 如右側紅圈處。 圖|European Space Agency

把超大磁鐵送上太空:阿爾法磁譜儀(AMS

丁肇中的第五個實驗目前仍在進行中,那就是位在國際太空站上的阿爾法磁譜儀(Alpha Magnetic Spectrometer,AMS)。

AMS 目標是研究宇宙射線的特性和起源。帶電的宇宙射線有質量,會被地球表面上 100 公里厚的大氣層吸收,所以我們無法在地面上研究帶電宇宙射線的電荷、動量等性質。這就是為什麼必須把一個磁譜儀放在外太空。

磁譜儀內含有磁鐵,當宇宙射線進入磁譜儀,會因為磁鐵的影響而偏轉軌跡,不同的粒子會留下不同的軌跡,因此根據偏轉的軌跡,就可以分辨出是哪一種宇宙射線粒子。在此之前,從來沒有人會把一個超大磁鐵放到太空站上。

國際太空站照片,阿爾法磁譜儀(AMS-02)正在收集宇宙數據,於 2011 年 5 月 19 日安裝完成。 圖|NASA

國際太空站照片,阿爾法磁譜儀(AMS-02)正在收集宇宙數據,於 2011 年 5 月 19 日安裝完成。 圖|NASA

丁肇中說,原因非常簡單,「大家都知道指南針的原理。當指南針放在太空站上,一端向北、一端向南,很快就會讓太空站失去控制。」為此,AMS 團隊設計了一個特殊的環形磁鐵,從外觀看就像一個木桶,它的磁場不會洩露,「AMS 做過兩次飛行,第一次是用太空梭載運到軌道上運行十天,就回到地面,驗證了這個實驗的可行性。第二次才送到太空站上。」丁肇中說。

AMS 也是一個國際合作的科學計畫,參與的團隊來自世界各地,臺灣也包括在內。對於如何挑選合作夥伴,丁肇中特別提到:「這個實驗很困難,是一個沒有人做過的實驗,你一定要專心。所以參加的人通常只做這個實驗。」

NASA YouTube 頻道對 AMS 磁譜儀的簡介。圖|NASA

AMS 獲得了很多的支援,2008 年,美國參議院和眾議院甚至通過了一條法律,在當時希望盡量減少太空飛行的時空背景下,要求美國政府為 AMS 增加一次太空梭飛行任務,把磁譜儀送到國際太空站上去。

自從 2011 年 5 月升空至今,AMS 在太空中順利地運行,值得一提的是,由臺灣製造的電子系統非常成功,丁肇中說:「整個電子系統包括 650 個微處理器 、30 萬個訊號通道。最值得驕傲的是,至今已經 11 年了,沒有一個是壞的 。

AMS 的訊號經由 NASA 通訊衛星傳遞,每日 16 小時由位在 CERN 的控制中心負責監控。在歐洲的夜間時段,則轉到中山科學院的亞洲控制中心監控,實現全年無休,每日 24 小時的監控。

「一開始做實驗的時候,我並沒有想到,太空站在太空中一定要不斷運行,這樣向心力與引力才會平衡。」丁肇中說:「這就表示我們沒有週六、週日,沒有中秋節也沒有過年,每天都要嚴格地監控著。」

丁肇中院士於 2013 年 5 月講述 AMS 首次研究成果。 圖|NASA

丁肇中院士於 2013 年 5 月講述 AMS 首次研究成果。 圖|NASA

自然科學的研究,只有第一

這 11 年來,AMS 獲得了許多和現有理論不符合的結果,帶來了對宇宙全新的認知。AMS 第一個成果是探索宇宙中電子與正電子的來源。

目前推測電子和正電子來源有三種可能性:宇宙線(含有質子和氦)與星際物質之間的碰撞、脈衝星產生、再來是暗物質的碰撞。 圖|研之有物(資料來源|丁肇中、Wiki)

目前推測電子和正電子來源有三種可能性:宇宙線(含有質子和氦)與星際物質之間的碰撞、脈衝星產生、再來是暗物質的碰撞。 圖|研之有物(資料來源|丁肇中、Wiki)

根據 AMS 目前的成果,關於電子的來源,宇宙線碰撞產生的電子佔比極低,顯然不是主要來源。從數據來看,電子主要是由兩個未知來源的冪律譜數據疊加而得,目前仍缺乏理論解釋冪律譜的來源。所謂的冪律譜,就是能譜隨著能量的某次方變化。

至於正電子的來源,如下圖所示,低能量的正電子主要來自宇宙線的碰撞,高能量正電子的分布則大致與暗物質理論相符合,丁肇中表示,「到 2030 年,AMS 的數據誤差會更縮小,」屆時就能真正證明高能正電子是否來自暗物質碰撞,「這是一個非常重要的目標。」

另一方面,AMS 也從數據推論出高能量正電子的來源很可能不是脈衝星,所以更意味著暗物質才是高能量正電子的主要來源,後續期待更多數據的佐證。

除了探索電子來源之外,AMS 也檢視了正電子的來源。低能量的正電子主要來自宇宙線的碰撞,高能量正電子的分布則大致與暗物質理論相符合,有待更多數據驗證。 圖|研之有物(資料來源|丁肇中)

除了探索電子來源之外,AMS 也檢視了正電子的來源。低能量的正電子主要來自宇宙線的碰撞,高能量正電子的分布則大致與暗物質理論相符合,有待更多數據驗證。 圖|研之有物(資料來源|丁肇中)

AMS 的第二個重要成果,是探索宇宙射線的特性和起源。

宇宙射線分為一級、二級宇宙射線。一級指的是在恆星裡經過核融合產生,然後在恆星爆炸的過程中被加速到高能量的射線,包括氫、氦、碳、鐵等。二級宇宙射線是一級宇宙線和星際物質相撞產生的,包括鋰、鈹、硼、氟等。

AMS 發現,一級宇宙射線可以依據剛度(動量除以電荷)的變化分成兩種,第一種包括氦、碳、氧、鐵,第二種則包括氖、鎂、矽、硫。而二級宇宙射線也分為兩種剛度變化:鋰、鈹、硼隨著剛度的變化是一樣的,氟則是另外一種變化。

宇宙中有各式各樣的宇宙射線,可是它們隨著剛度的變化卻是有限的,「這是不可想像的現象,」丁肇中說:

"「所有宇宙射線的實驗結果都與理論不符合——所有目前的理論都是錯誤的。」"

AMS 將繼續工作到 2030 年,在那之前,AMS 的探測器會升級,讓接收度提升三倍。AMS 將在宇宙這個最廣袤的實驗室中,持續收集數據,尋找自然界中存在,而我們未曾想到、也不曾發現的現象,改變我們對宇宙的認知。

「我的大多數實驗都受到很多人的反對。理由是實驗沒有物理意義、實驗非常困難,不可能成功。」丁肇中說:「可是過去 45 年來,很多優秀的科學家,包括臺灣的李世昌院士和張元翰教授(註),對實驗做出很重要的貢獻。實驗結果改變了我們對宇宙的認知。每一個實驗都發展新的儀器,讓實驗成功。」

丁肇中以自身的最後一個體會,為整場講座下了一個總結:

"「自然科學的研究,是具有競爭性的,只有第一名,沒有第二名。」畢竟,「沒有人知道誰是第二個發現相對論的。」"

最後,「研之有物」也收錄了在該場演講的尾聲,中央研究院物理所的李世昌院士與丁肇中院士的精彩對談,他們是合作多年的朋友,在問答之間,我們也能更瞭解丁院士如何看待實驗物理,節錄摘要如下。

李世昌院士(左)與丁肇中院士(右)對談。 圖|中研院物理所

李世昌院士(左)與丁肇中院士(右)對談。 圖|中研院物理所

Q. 您到母校密西根大學的時候 ,起初是想要鑽研理論物理,但為什麼後來改朝實驗物理的方向進行?

丁:我起初其實是學機械工程,但當時還沒有電腦,必須自己畫圖,而我一條線都畫不直,所以我的老師建議我改念數學或物理。而就像李院士說的,我一開始選擇了理論物理,但後來,發現電子自旋的喬治·烏倫貝克(George Uhlenbeck)教授給了我啟發。

烏倫貝克說:「如果重來一次,我會選擇當個實驗物理學家,而不是理論物理學家。」我問他為什麼,他說:「對物理真正有影響力的理論物理學家,一隻手的指頭就數得出來。但做實驗得到的每一個結果,都是對物理、對人類知識有貢獻的。」我和他談完之後,就在他的辦公室外走來走去,然後告訴他:「You are right, I’m leaving you.」(在場聽眾笑)

Q. 剛才演講中,您強調科學需要打破現有理論才會進步。但是我跟您工作這麼多年,看到您經常徵詢有名的物理學家意見,也有邀請理論物理學家參加 AMS 實驗組的大會。因為您對理論不會完全相信,所以想請問您在什麼情況下 ,會覺得要跟這些理論物理學家談一談?

丁:我通常在進行大型實驗之前 ,會找幾個人談一談。 一個是實驗物理學家沃爾夫岡·帕諾夫斯基(Wolfgang K. H. Panofsky),他在史丹佛大學做了一個兩公里長的直線加速器,對技術及理論都非常了解。還有一個人是理查·費曼(Richard Feynman),我和費曼相熟是因為我證明了他的理論是對的。此外包括史蒂文·溫伯格(Steven Weinberg) 、謝爾登·格拉肖(Sheldon Glashow)等物理學家,我也會跟他們談我的實驗。通常我都是已經想好實驗以後,再聽聽他們的意見作為參考,不過我從來不照他們所說的去做。

Q. 您曾經說過,如果人是依據自己有什麼能力,再來選擇研究的課題,這是最笨、最愚蠢的,應該先看一個題目有沒有重大影響力來決定。如果自己的能力不足,可以找別人合作。請問您在做完 L3 實驗之後,是如何選擇現在正在進行的 AMS 實驗?

 丁:當時我已經做了很多加速器的實驗,我想下一步,應該挑一個大家都認為不可能的實驗,所以就挑了一個到太空去做的實驗,也就是 AMS。我從來沒有做過太空實驗,我們組裡也沒有一個人有太空相關的經驗,所以過去的經驗是沒有意義的。

當我和美國政府提出 AMS 實驗時,美國能源部反對。他們認為我從來沒做過太空實驗,而且太空實驗非常非常貴。為了證明實驗的價值,我要求他們成立評審委員會,成員必須是世界第一流的科學家 、美國科學院院士以及拿過諾貝爾獎的人。這是因為第一流科學家眼光比較遠,能夠看到將來。後來委員會成立,成員包括許多天文物理學家。經評審後,他們認為這是很重要的實驗。最後我們就在 NASA 展開了 AMS 實驗。

Q. 發表的實驗結果一定要正確,這是您最重視的一件事。在發現 J 粒子的時候,從您看到訊號到最後決定發表,隔了很長的時間。有人說如果您早一點發表,Burton Richter 可能就沒有機會和您共同得到諾貝爾獎。您對於實驗的結果,是如何決定發表的時機?

 丁:我們是在 1974 年 8 月看出有 J 粒子的訊號,本來打算在 10 月時發表,但我想稍微等一等,看能不能看到更高能量的粒子,所以才等到 11 月。當時我並不知道別人可以用正負電子對撞機來做這個實驗。直到 11 月 11 日,我到史丹佛大學去,才知道伯頓·里克特(Burton Richter)帶領的 SLAC 國家加速器實驗室團隊也發現了一樣的事情。

至於 AMS 的成果,我一直提醒大家記住一件事,我們花了 20 年的時間準備這個實驗,在接下來的半個世紀,我想很可能沒有人會再像我們這麼笨,再放一個磁譜儀到太空中,所以如果發表了什麼結果,一定會影響整個物理研究的方向,所以要特別小心謹慎。

———
註:李世昌院士現為中研院物理所兼任研究員,張元翰現為中研院物理所特聘研究員。

 


本文轉載自中央研究院《研之有物》,為中研院廣告。

 

整理撰文|郭雅欣
責任編輯|簡克志
美術設計|蔡宛潔

DEC. 2024

2024年度精選影像

跟著國家地理攝影師回顧全年精采故事

2024年度精選影像

AD

熱門精選

AD

AD

Subscribe
立即訂閱
keyboard_arrow_up

AD

ad970250