• 中研院廖俊智院長運用合成生物學,創造出可持續固碳的人工碳循環路徑,產出具永續性的生質燃料。 圖│研之有物
  • 圖│研之有物(資料來源│廖俊智)
  • 植物行光合作用即是大自然的固碳系統之一,光反應將光能變成化學能,再將化學能用來固定二氧化碳,最終產生葡萄糖。 圖│研之有物
  • 廖俊智與團隊改造的微生物系統:透過細菌細胞的合成反應,先將電能轉換為化學能,再用化學能合成產出燃料。為了保護細菌不被電極產生的自由基影響,研究團隊加上一個陶瓷分隔層,在電極和細菌之間隔出一點距離,讓這些自由基在觸及細菌細胞前就先衰變。 圖│研之有物(資料來源│Integrated Electromicrobial Conversion of CO2 to Higher Alcohols)
  • 廖俊智與團隊改造的微生物系統:透過細菌細胞的合成反應,先將電能轉換為化學能,再用化學能合成產出燃料。為了保護細菌不被電極產生的自由基影響,研究團隊加上一個陶瓷分隔層,在電極和細菌之間隔出一點距離,讓這些自由基在觸及細菌細胞前就先衰變。 圖│研之有物(資料來源│Integrated Electromicrobial Conversion of CO2 to Higher Alcohols)
  • 廖俊智團隊改造大腸桿菌的代謝路徑,使其以甲醇為唯一的食物來源(碳源),將溫室氣體轉化成的甲醇,變成可再利用的燃料(例如:異丁醇)。 圖│研之有物(資料來源│廖俊智)
1
  • 中研院廖俊智院長運用合成生物學,創造出可持續固碳的人工碳循環路徑,產出具永續性的生質燃料。 圖│研之有物

  • 圖│研之有物(資料來源│廖俊智)

  • 植物行光合作用即是大自然的固碳系統之一,光反應將光能變成化學能,再將化學能用來固定二氧化碳,最終產生葡萄糖。 圖│研之有物

  • 廖俊智與團隊改造的微生物系統:透過細菌細胞的合成反應,先將電能轉換為化學能,再用化學能合成產出燃料。為了保護細菌不被電極產生的自由基影響,研究團隊加上一個陶瓷分隔層,在電極和細菌之間隔出一點距離,讓這些自由基在觸及細菌細胞前就先衰變。 圖│研之有物(資料來源│Integrated Electromicrobial Conversion of CO2 to Higher Alcohols)

  • 廖俊智與團隊改造的微生物系統:透過細菌細胞的合成反應,先將電能轉換為化學能,再用化學能合成產出燃料。為了保護細菌不被電極產生的自由基影響,研究團隊加上一個陶瓷分隔層,在電極和細菌之間隔出一點距離,讓這些自由基在觸及細菌細胞前就先衰變。 圖│研之有物(資料來源│Integrated Electromicrobial Conversion of CO2 to Higher Alcohols)

  • 廖俊智團隊改造大腸桿菌的代謝路徑,使其以甲醇為唯一的食物來源(碳源),將溫室氣體轉化成的甲醇,變成可再利用的燃料(例如:異丁醇)。 圖│研之有物(資料來源│廖俊智)

Share

AD